A way of purifying carbon nanotubes

16th August 2016
Posted By : Enaie Azambuja
A way of purifying carbon nanotubes

Researchers at McMaster University have developed a way to purify carbon nanotubes, which are expected to replace silicon within computer chips and a wide array of electronics. "Once we have a reliable source of pure nanotubes that are not very expensive, a lot can happen very quickly," says Alex Adronov, a professor of Chemistry at McMaster whose research team has developed a new and potentially cost-efficient way to purify carbon nanotubes.

Carbon nanotubes are tiny, flexible conductive nano-scale materials, expected to revolutionise computers and electronics by replacing much larger silicon-based chips.

A major problem standing in the way of the new technology, however, has been untangling metallic and semiconducting carbon nanotubes, since both are created simultaneously in the process of producing the microscopic structures, which typically involves heating carbon-based gases to a point where mixed clusters of nanotubes form spontaneously as black soot.

Only pure semiconducting or metallic carbon nanotubes are effective in device applications, but efficiently isolating them has proven to be a challenging problem to overcome. Even when the nanotube soot is ground down, semiconducting and metallic nanotubes are knotted together within each grain of powder. Both components are valuable, but only when separated.

Researchers around the world have spent years trying to find effective and efficient ways to isolate carbon nanotubes and unleash their value.

While previous researchers had created polymers that could allow semiconducting carbon nanotubes to be dissolved and washed away, leaving metallic nanotubes behind, there was no such process for doing the opposite: dispersing the metallic nanotubes and leaving behind the semiconducting structures.

Now, Adronov's research group has managed to reverse the electronic characteristics of a polymer known to disperse semiconducting nanotubes - while leaving the rest of the polymer's structure intact. By so doing, they have reversed the process, leaving the semiconducting nanotubes behind while making it possible to disperse the metallic nanotubes.

The researchers worked closely with experts and equipment from McMaster's Faculty of Engineering and the Canada Centre for Electron Microscopy, located on the university's campus. "There aren't many places in the world where you can to this type of interdisciplinary work," Adronov says.

The next step, he explains, is for his team or other researchers to exploit the discovery by finding a way to develop even more efficient polymers and scale up the process for commercial production.

The research is described in the cover story of Chemistry - A European Journal.


You must be logged in to comment

Write a comment

No comments




More from McMaster University

Sign up to view our publications

Sign up

Sign up to view our downloads

Sign up

SPS IPC Drives 2019
26th November 2019
Germany Nuremberg Messe
Vietnam International Defense & Security Exhibition 2020
4th March 2020
Vietnam National Convention Center, Hanoi