Protecting precious artefacts by graphene gilding

12th September 2018
Posted By : Enaie Azambuja
Protecting precious artefacts by graphene gilding

Gilding is the process of coating intricate artefacts with precious metals. Ancient Egyptians and Chinese coated their sculptures with thin metal films using gilding - and these golden sculptures have resisted corrosion, wear, and environmental degradation for thousands of years. The middle and outer coffins of Tutankhamun, for instance, are gold leaf gilded, as are many other ancient treasures.

In a new study, Illinois’ Sameh Tawfick, from the Department of Mechanical Science & Engineering (MechSE) and the Beckman Institute, inspired by this ancient process, has added a single layer of carbon atoms, known as graphene, on top of metal leaves—doubling the protective quality of gilding against wear and tear.

The study, 'Gilding with Graphene: Rapid Chemical Vapor Deposition Synthesis of Graphene on Thin Metal Leaves,' is published in the journal Advanced Functional Materials. The researchers coated thin metal leaves of palladium with a single layer of graphene.

Metal leaves, or foils, offer many advantages as a scalable coating material, including their commercial availability in large rolls and their comparatively low price. By bonding a single layer of graphene to the leaves, Tawfick and his team demonstrated unexpected benefits, including enhanced mechanical resistance.

Their work presents exciting opportunities for protective coating applications on large structures like buildings or ship hulls, metal surfaces of consumer electronics, and small precious artefacts or jewelry.

“Adding one more layer of graphene atoms onto the palladium made it twice as resistant to indents than the bare leaves alone,” said Tawfick. “It’s also very attractive from a cost perspective. The amount of graphene needed to cover the gilded structures of the Carbide & Carbon Building in Chicago, for example, would be the size of the head of a pin.”

Additionally, the team developed a new technology to grow high-quality graphene directly on the surface of 150 nanometer-thin palladium leaves—in just 30 seconds. Using a process called chemical vapor deposition, in which the metal leaf is processed in a 1,100°C furnace, the bare palladium leaf acts as a catalyst, allowing the gases to react quickly.

“Chemical vapor deposition of graphene requires a very high temperature, which could melt the leaves or cause them to bead up by a process called solid state dewetting,” said Kaihao Zhang, PhD candidate in MechSE and lead author of the study.

“The process we developed deposits the graphene quickly enough to avoid high-temperature degradation, it’s scalable, and it produces graphene of very high quality.”

Charalampos Androulidakis, postdoctoral research associate, and Mingze Chen, undergraduate research assistant, are also co-authors of the paper. All are members of Tawfick’s Kinetic Materials Research Group at Illinois.


You must be logged in to comment

Write a comment

No comments




More from University of Illinois

Sign up to view our publications

Sign up

Sign up to view our downloads

Sign up

SPS IPC Drives 2018
27th November 2018
Germany Nuremberg
International Security Expo 2018
28th November 2018
United Kingdom London Olympia
The Security Event 2019
9th April 2019
United Kingdom NEC, Birmingham
Ceramics Expo 2019
29th April 2019
United States of America International Exposition Center (I-X Center)