'Smart glass' enhanced with light-emitting nanoparticles

7th June 2016
Posted By : Enaie Azambuja
'Smart glass' enhanced with light-emitting nanoparticles

Australian researchers at the University of Adelaide have developed a method for embedding light-emitting nanoparticles into glass without losing any of their unique properties – a major step towards 'smart glass' applications such as 3D display screens or remote radiation sensors. This "hybrid glass" combines the properties of special luminescent nanoparticles with the well-known aspects of glass, such as transparency and the ability to be processed into various shapes including very fine optical fibres.

The research, in collaboration with Macquarie University and University of Melbourne, has been published online in the journal Advanced Optical Materials.

"These novel luminescent nanoparticles, called upconversion nanoparticles, have become promising candidates for a whole variety of ultra-high tech applications such as biological sensing, biomedical imaging and 3D volumetric displays," says lead author Dr Tim Zhao, from the University of Adelaide's School of Physical Sciences and Institute for Photonics and Advanced Sensing (IPAS).

"Integrating these nanoparticles into glass, which is usually inert, opens up exciting possibilities for new hybrid materials and devices that can take advantage of the properties of nanoparticles in ways we haven't been able to do before.

For example, neuroscientists currently use dye injected into the brain and lasers to be able to guide a glass pipette to the site they are interested in. If fluorescent nanoparticles were embedded in the glass pipettes, the unique luminescence of the hybrid glass could act like a torch to guide the pipette directly to the individual neurons of interest."

Although this method was developed with upconversion nanoparticles, the researchers believe their new 'direct-doping' approach can be generalised to other nanoparticles with interesting photonic, electronic and magnetic properties. There will be many applications – depending on the properties of the nanoparticle.

"If we infuse glass with a nanoparticle that is sensitive to radiation and then draw that hybrid glass into a fibre, we could have a remote sensor suitable for nuclear facilities," says Dr Zhao.

To date, the method used to integrate upconversion nanoparticles into glass has relied on the in-situ growth of the nanoparticles within the glass. "We've seen remarkable progress in this area but the control over the nanoparticles and the glass compositions has been limited, restricting the development of many proposed applications," says project leader Professor Heike Ebendorff-Heideprem, Deputy Director of IPAS.

"With our new direct doping method, which involves synthesising the nanoparticles and glass separately and then combining them using the right conditions, we've been able to keep the nanoparticles intact and well dispersed throughout the glass".

"The nanoparticles remain functional and the glass transparency is still very close to its original quality. We are heading towards a whole new world of hybrid glass and devices for light-based technologies."


You must be logged in to comment

Write a comment

No comments




More from University of Adelaide

Sign up to view our publications

Sign up

Sign up to view our downloads

Sign up

IoT Solutions World Congress 2019
29th October 2019
Spain Barcelona
Maintec 2019
30th October 2019
United Kingdom NEC, Birmingham
NOAH Conference 2019
30th October 2019
United Kingdom Old Billingsgate, London
AI & Robotics Conference Expo 2019
31st October 2019
United Kingdom etc.venues, London
productronica 2019
12th November 2019
Germany Messe München